U.G. 6th Semester Examination - 2020 MATHEMATICS

Course Code: BMTMCCHT601

Course Title: Numerical Methods & Computer Programming

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meanings.

- 1. Answer any **ten** questions: $1 \times 10 = 10$
 - i) Write down the number of significant figures in the following numbers:

3.05, 0.0290

- ii) What do you mean by rounding off errors?
- iii) Establish $E \equiv 1 + \Delta$, symbols have their usual significance.
- iv) Obtain the linear interpolation formula using two points (x_1, y_1) and (x_2, y_2) .

- v) State the condition of convergence of Newton-Raphson method.
- vi) Define degree of precision of an interpolating quadrature formula.
- vii) State Lipschitz condition for the existence of a unique solution of an ordinary differential equation of first order and first degree.
- viii) Given f(0)=1, f(1)=1, f(2)=4 then find $\int_{0}^{2} f(x) dx$ by Trapezoidal Rule.
- ix) Define order of convergence of an iterative method for finding root of an equation.
- x) Write down the binary equivalent of the decimal number $(29)_{10}$.
- xi) What is RAM?
- xii) What is the maximum length allowed in defining a variable in C?
- xiii) Library function pow () belongs to which header file?
- xiv) Write the keyword used to define floating point numbers.

xv) What should be the output of the following program:

```
# include <studio.h>
int main ()
{
 int a=10/3;
 print f("%d", a);
}
```

2. Answer any **five** questions:

- $2 \times 5 = 10$
- i) Find the absolute and relative error in computation of $f(x) = 3\sin x 2x^2 9$ for x=0 when the error in x is 0.003.
- ii) By constructing the difference table, find the sixth term of the series 8, 12, 19, 29, 42.
- iii) What is the condition for the convergence of Gauss-Seidel iterative method for the solution of a system of simultaneous equations?
- iv) The root of an equation f(x)=0 lies between 1 and 3. How many number of iterations are necessary in determining the root with a tolerance level $\varepsilon \sim 10^{-4}$ by bisection method.

- v) What do you mean by 'Interpreter' and 'Compiler'?
- vi) Use 2's complement method to compute the difference

$$(1101.01)_2 - (1010.11)_2$$

- vii) Write a program to read three values a, b, c from keyboard.
- viii) What will be the value of x when the following segment is executed?

- 3. Answer any **two** questions:
- $5 \times 2 = 10$
- Write down the Lagrange's interpolation formula and therefrom deduce closed type Newton-Cotes' quadrature formula in the form

$$I = (b-a)\sum_{r=0}^{n} K_{r}^{(n)} y_{r}$$
 for the integral

$$I = \int_{a}^{b} f(x) dx$$
, where $K_{r}^{(n)}$ being Cotes' co-efficients and $y_{r} = f(x_{r})$.

- ii) Prove that $f(x_k, x_{k+1}, ..., x_{k+n}) = \frac{\Delta^n f(x_k)}{n!h^n}$ when the argument values are equispaced with spacing h and Δ is a forward difference operator.
- iii) a) Explain the term 'Software' and 'Hardware'.
 - b) Write the syntax of nested if ... else statement. 2+3
- 4. Answer any **one** question: $10 \times 1 = 10$
 - i) a) Write down the iterative scheme of the Regula-Falsi method and discuss it's convergence. Why does the method call 'linear interpolation method'?
 - b) Derive an expression of the error involved in approximating a function by an interpolating polynomial when the functional values are known at (n+1) distinct points. (5+1)+4=10
 - ii) a) Describe the Gauss-Seidel iteration method in solving a system of n-linear algebraic equations in n-unknowns.

 Comment on the convergence of the method.

- b) Prove that the Simpson's 1/3rd rule of integration can be expressed as an area underlying a parabola $y=ax^2+bx+c$ bounded by the x-axis and a line passing through the points $(-h, y_0)$, $(0, y_1)$, (h, y_2) . 5+5=10
- iii) a) State the rules of using for-loop in C.

 Draw a flow-chart for showing the looping action of for-loop.
 - b) Write a program to test whether a given number is prime or not. (2+3)+5=10